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Variance Calculations and the Bessel Kernel 
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In the Laguerre ensemble of N•  N Hermitian matrices, it is of interest both 
theoretically and for applications to quantum transport problems to compute 
the variance of a linear statistic, denoted varNf, as N--* ~ .  Furthermore, this 
statistic often contains an additional parameter ~ for which the limit ~ ~ ov is 
most interesting and most difficult to compute numerically. We derive exact 
expressions for both limu ~ ~ varu f and lim= ~ ~ limN ~ ~ yarn f. 

KEY WORDS: Random matrices; Laguerre ensemble; variance; quantum 
transport. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF M A I N  R E S U L T  

In  the  r a n d o m  m a t r i x  t h e o r y  o f  q u a n t u m  t r a n s p o r t  (see refs. 1, 2, and  6 

a n d  references  the re in )  the  fo l l owing  q u a n t i t y  is f undamen ta l3 :  

whe re  KN(~,  Is is the  L a g u e r r e  kerne l ;  tha t  is, 

N - - I  

j = o  
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3 The notational choice f(xfx)  rather than f (x)  in (1.1) will be convenient later, It also agrees 
with the convention of Stone et aL (6l 
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and {~bj(x)} is the sequence of functions obtained by orthonormalizing the 
sequence 

{ xJxV/2e- X/2 }2=o 

over (0, 0o) (here v > -1 ) .  In particular, one is interested in 

v a r f : =  lira v a r N f  (1.2) 
N~c~3 

in the limit e ~ oo. In applications various choices are made for f ,  but we 
need assume here only that f is smooth and sufficiently decreasing at 
infinity to make the integrals Well-defined. 

In the random matrix model of disordered conductors, the quantity 
v a r f  is related (via the two-probe Landauer formula) to the fluctuations 
of the conductance and the limit e ~ oo is the high-density (or metallic) 
regime. A lucid account can be found in the review article by Stone et al., (6) 
to which we refer the reader for further details and references. However, 
these authors did not evaluate varN f in the limits of interest; namely 
N--, oo followed by c~ ~ oo. It is the purpose of this paper to evaluate these 
limits. We will see that the result agrees with the prediction of 
Beenakker, (1'2) who gave a heuristic argument for this limit. 

By a change of variables we write (1.1) in the more suggestive form 

1 x 
v a r N f =  fo f2(--~)--4--NKN(--4--N,-~N)dX 

(1 (x y))2 
• - KN Z-N' s dx dy (1.3) 

From asymptotic formulas for generalized Laguerre polynomials (see, e.g., 
10.15.2 in ref. 3) it follows that (4'7) 

' 
K(x, y) := lira K~ , 

N ~  ~ 4 -N 

2 (x - -y )  
(1.4) 

where Jr(z) is the Bessel function of order v. (The limit is uniform in x and 
y for 0 < x, y ~< L < ~ and all L.) We call K(x, y) the "Bessel kernel." (This 
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kernel also arises in scaling the Jacobi ensemble of random matrices at 
either edge -t-1.) Using this in (1.3), we obtain 

var f =  f o  f g ( -~ f )  K(x,x)dx 

where K is the Bessel kernel. 
The problem is reduced to evaluating (1.5) in the limit c~ --, oo. We will 

show that 

lira var f = ~  If(2iy)12ytanh(~y)dy (1.6) 

where f is the Mellin transform of f ,  i.e., 

j~(z) = f ~  x z If(x) dx 

This agrees with the result of Beenakker (1'2) once one notes that his f(x) 
is our f(x/ 'x). For numerous applications of (1.6) we refer the reader to 
Beenakker. (2) 

2. T H E  L I M I T  a ~  oo 

2.1.  Use  o f  H a n k e l  T r a n s f o r m  

It is convenient to define the kernel 

L(x, y):= 2K(x 2, y2) 

= f/tJv(xt) Jv(yt) dt (2.1) 

where K(x, y) is the Bessel kernel. (A simple proof of the second equality 
can be found in ref. 7.) Then v a r f  can be written 

vat f =  xf 2 L(x, x) dx -  I1 (2.2) 



418 

where 

Basor and Tracy 

where we used (2.1) to deduce the middle equality and we made the change 
of variables x/e --* x and at' ~ t' to obtain the last equality. 

We now recall the Hankel inversion formula: 

f :  u ( f :  xg(x) Jv(xu) dx) Jv(u~) du=g( ~) 

which holds for x /x  g(x) continuous and absolutely integrable on the 
positive real line and v > -1/2 .  First writing the t'-integration in (2.3) as 
the integral from (0, oe) minus the integral from (c~, 0o) and then employ- 
ing the Hankel inversion formula [with the choice g(x) = f(x) Jv(c~tx)] on 
the part containing the t'-integration from (0, oe), we see that this part 
exactly cancels the single integral appearing in the expression (2.2) for 
var f. Thus we are left with 

v a r f : f / d t ; :  dy f :  dt ' f :  dx 

x xytt'f(x)f(Y)J,(atx)j,(t'~Y)J,(t'x,J,(ty) 

:o~4f2 dtf: dy~ dsf: dx 
x xytsf(x)f(y) Jv(Ttx) J,(c~sx) Jv(~Sy) J,(c~ty) (2.4) 



Variance Calculat ions and the Bessel Kernel 419 

We remark that the Hankel transform plays the analogous role for the 
Bessel kernel that the Fourier transform plays for the sine kernel 

1 sin zr (x-y)  

x - - y  

in the Gaussian unitary ensemble. 

2.2. Residue Calculat ion 

Introducing the (inverse) Mellin transform 

1 f~+io~ 
f ( x )  = ~ui f ( z )  x - Z  dz (c > O) 

c-- io~ 

into (2.4) and interchanging the orders of integration, we see that 

1 .+ i~  ! f c + i ~  varf=~4--j d Z I ? ( Z 1 )  d z 2 ? ( z 2 )  
2rci c i~ 2ui c - im  

' S I o  x f dt t ds s dx  x -~1 + 1J~(~tx) Jv(o:sx) 
OO 1 

2 x dy y-Z2+ 1Jv(~ty ) jv(o:sy ) 

The x and y integrations can be performed using (6.5762) in ref. 5; namely, 

fO ~~ --2 x Jv(aX) Jv(bx)  dx  = 

where F(a, b; c; z)  is the 
9~(2) > -1.  

(ab) ~ F(v + (1 -- 2)/2) 
2)~(a + b) 2v-~+ 1 F(1 + v) F((1 + 2)/2) 

( 1 2, ~ ; 2 v +  1 ; ~ )  • F v+--~--- v+ 1 4ab \ 

hypergeometric function, a, b > 0, 2~R(v) + 1 > 

In the resulting integral we make the following change of variables: 

4ts 
u = - -  V = t q - S  

(t + S) 2 ' 

which has Jacobian 

I.) 
J(u,  v) 4(1 - -u )  1/2 
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In  the vu plane we are now integrat ing over  the region in the first quadran t  
bounded  above  by the curve 

4(v - 1 ) 
u =  v2 , v>~l  

and bounded  below by the ray [ 1, oo ] on the v axis. The  v integrat ion may  
now be trivially done with the result that  

1 1 fC+ ioO dz1 ? ( Z I ) ~  zl F(V "q- 1 - -  Z l / 2  ) 
v a r f = 4 2 v  -SF=(v+ 1)21ri c - i ~  F(zl/2) 

f F(v + 1 - z2/2) X 1 c+i~ d z 2 ? ( z 2 )  ~z2 
2rci c e~ F(z2/2) 

x - -  u 2 ~ + l - z ~ - ~ ( 1 - u )  -1/2 
Z 1 -~- Z 2 

x [(1 + (1 --U)1/2) zl+z2- (1 - (1 --IX)1/2) zl+z2] 

X Fv(zl, u) Fv(Z2, tt) du 

where 

( z 1 ) 
F~(z ,u) :=F v + l - ~ , v + ~ ; 2 v + l ; u  

We now use Zl and z = zl + z2 as integrat ion variables so that  

I 1 fc+ioo )r(v+l-zd2) 
v a r f = 4 2 V - l F 2 ( v + l ) 2 ~ i  c- i~ dz~f(z l  F(zl/2 ) 

1 f2c+,oo a z r  + l _ ( z _ z l ) / 2 )  
x 27t--io2c ioo r ( ( z - z~ ) /2 )  

[ :/2 (1 + ( 1  - -  U ) l / 2 ) z - -  (1 - - (1  --u)l/2) z 
X 

Jo Z 

x Fv(Zl, u) Fv(z - zl,  u) du 

Observe  that  the c~ dependence of var  f resides solely in the term ez in the 
above  integral. To  compute  c~ ~ oo this suggests we should first deform 
the con tour  into the left-half z plane. The  lim~ ~ ~ var  f will be determined 
by the residue of the pole at z = 0. 

T o  calculate this residue (which is a function of z , )  we must  know the 
principal  par t  of the Lauren t  expansion (in z) of the integral involving 
the u integrat ion.  The  divergence of this integral as z ~ 0 is determined by 



Variance Calculations and the Bessel Kernel 421 

the b e h a v i o r  of  the i n t e g r a n d  in  the  v ic in i ty  of u = 1. This  b e h a v i o r  n e a r  

u = 1 is s t r a igh t fo rward  to c o m p u t e  since it is k n o w n  (3) tha t  

F ( a , b ; c , u )  F (c )  F ( a + b - C ) ( l _ u )  . . . .  b as u - - , 1  
r(a) r(b) 

T h u s  l i m ~  ~ v a r f  is expressed as a s ingle in tegra l  over  the var iab le  Zx. 
If  we n o w  m a k e  use of  the F - f u n c t i o n  ident i t ies  (3) 

7~ 

F ( z )  F ( - z )  = - z sin rcz 

we o b t a i n  

l im 

TC 
F ( 1 / 2  + z) F ( 1 / 2  - z) = 

COS 7~Z 

F(2v  + 1 ) = 22vrc-1/2F(v -1- 1/2) F ( v  + 1 ) 

1 c+i~f(zl)f'(-Zl)~tan ~zl dzl 
v a r f =  2~2i i oo 

We  n o w  deform the c o n t o u r  to the i m a g i n a r y  axis ( a n d  send  y ~ 2y)  to 
o b t a i n  (1.6). 
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